
Enterprise Architecture in an Agile world

David Apolinário Garcia Pereira

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Pedro Manuel Moreira Vaz Antunes de Sousa

Examination Committee

Chairperson: Prof. Mário Jorge Costa Gaspar da Silva
Supervisor: Prof. Pedro Manuel Moreira Vaz Antunes de Sousa

Member of the Committee: Prof. Alberto Manuel Rodrigues da Silva

November 2022

Acknowledgments

I would like to express my deepest appreciation to Professor Pedro Sousa for providing me with an

enriching experience and the guidance needed to achieve these results.

I would like to extend my sincere thanks to the whole team at Link Consulting who always helped me

solve the challenges that arose while developing this project, in particular, João Zeferino, David Moreira,

and Alexandre Marques.

I would also like to thank Instituto Superior Técnico for giving me the knowledge and tools I needed

for this project and for preparing me for any future challenges.

I am also thankful to my family, who have shown nothing but unwavering support, allowing me to

thrive as an upcoming adult and working engineer.

Finally, I would like to thank my loving girlfriend, Ana Sofia Fernandes, and my Wonder Team (Miguel

Marcelino, Vasco Castro, Diogo Soares, Samuel Ferreira, and Andreia Batista), who provided me with

encouragement and patience throughout my academic years.

i

Abstract

Enterprise Architecture and Agile methodologies are two increasingly important notions in the enterprise

world. The first is crucial to ensure business success through documentation of the current practices of

the enterprise, and enable innovation through the safety of well-documented processes and functions.

The latter helps reduce operation costs, and in turn, maximize profits, through different software devel-

opment processes. This study utilizes the already defined workflows of an Agile development project

to develop automated processes that help in creating and maintaining architectural representations of

the project. The Enterprise Architecture follows the principles stated in TOGAF’s ADM and it uses the

Atlas Enterprise Cartography Tool to support the creation of dynamic architectural assets, providing a

mapping between Agile development and Enterprise Architecture.

Keywords

Enterprise Architecture; Agile methodologies; TOGAF ADM; Atlas Enterprise Cartography Tool.

Resumo

Arquitectura Empresarial e metodologias ágeis são duas noções cada vez mais importantes no mundo

empresarial. A primeira é crucial para assegurar o sucesso empresarial através da documentação das

práticas atuais da empresa, e permitir a inovação através da segurança de processos e funções bem

documentadas. A Arquitetura Empresarial ajuda a reduzir os custos de operação e, por sua vez, a max-

imizar os lucros, através de diferentes processos de desenvolvimento de software. Este estudo utiliza

os fluxos de trabalho já definidos de um projecto de desenvolvimento ágil para desenvolver processos

automatizados que facilitam a criação e manutenção de representações de Arquitectura Empresarial

do projecto. A arquitetura criada segue os princı́pios do framework TOGAF ADM. O Atlas Enterprise

Cartography Tool apoia a criação de bens arquitectónicos dinâmicos, permitindo um mapeamento entre

o desenvolvimento ágil e a Arquitectura Empresarial.

Palavras Chave

Arquitetura Empresarial; Desenvolvimento ágil; TOGAF ADM; Atlas Enterprise Cartography Tool;

Contents

1 Introduction 1

1.1 Background Work . 3

1.1.1 Enterprise Architecture . 3

1.1.2 TOGAF ADM . 4

1.1.2.A Phase 0: Preliminary Phase . 4

1.1.2.B Phase A: Architecture Vision . 4

1.1.2.C Phase B: Business Architecture . 4

1.1.2.D Phase C: Information Systems Architecture 4

1.1.2.E Phase D: Technology Architecture . 5

1.1.2.F Phase E: Opportunities & Solutions . 5

1.1.2.G Phase F: Migration Planning . 5

1.1.2.H Phase G: Implementation Planning . 5

1.1.2.I Phase H: Architecture Change Management 6

1.1.3 Atlas Enterprise Cartography Tool . 6

1.1.3.A Atlas Data Model . 6

1.1.3.B Atlas Structure . 6

1.1.3.C Atlas Representations . 7

1.1.4 Agile Development Methodologies . 8

1.2 Objectives . 10

2 Related Work 12

2.1 Compatibility . 13

2.2 Proposed Frameworks and Models . 14

2.2.1 Architecture Definition . 14

2.2.2 Mapping between Enterprise Architecture and Agile 15

2.3 Discussion of the Literature . 15

3 Solution Details 18

3.1 Solution Architecture . 19

v

3.2 Supporting Agile Project . 20

3.3 Solution Implementation . 22

3.3.1 Preparation Phase . 22

3.3.2 Azure DevOps Batch Job Implementation . 23

3.3.3 Swagger File Parser Implementation . 25

3.3.4 Atlas Agile Repository Configuration . 27

3.3.5 TOGAF ADM Artifact Analysis . 27

3.3.5.A Preliminary Phase . 28

3.3.5.B Phase A (Architecture Vision) . 28

3.3.5.C Phases B, C, and D (Business, Information Systems, and Technology

Architecture) . 28

3.3.5.D Phases E, F, G, and H (Opportunities and Solutions, Migration Planning,

Implementation Governance, and Architecture Change Management) . . 29

3.3.6 Architectural Representations Creation . 29

3.3.6.A Tabular View Representation . 29

3.3.6.B Matrix Representation . 30

3.3.6.C Blueprint Representation . 30

4 Results and Analysis 32

4.1 Components of the Architecture . 33

4.1.1 Architecture Vision Layer . 33

4.1.1.A Goal Catalog . 34

4.1.1.B Requirement Catalog . 35

4.1.1.C Goal Organic Blueprint . 35

4.1.2 Business Architecture Layer . 35

4.1.2.A Business Actor Context Blueprint . 36

4.1.3 Application Architecture Layer . 36

4.1.3.A Application Component Catalog . 37

4.1.3.B Application Service Catalog . 38

4.1.3.C Application Integration Blueprint . 38

4.1.3.D Application Interaction Map . 38

4.1.4 Technology Architecture Layer . 39

4.1.4.A Node Catalog Representation . 39

4.1.4.B System Software Catalog Representation 41

4.1.4.C Node Context Blueprint . 41

4.1.4.D System Software Context Blueprint . 41

vi

4.2 Evolution of the Architecture . 42

4.3 Assessment of the Proposed Solution . 44

4.4 Limitations of the Proposed Solution . 45

5 Conclusion 46

5.1 Resulting Architecture . 47

5.2 Future Work . 48

Bibliography 48

vii

List of Figures

1.1 Phases of TOGAF’s Architecture Development Method . 3

1.2 Properties of an Atlas Object - Example . 7

1.3 Atlas Object Relationship Model - Example . 7

1.4 Atlas Application Layered Blueprint - Example . 9

1.5 Atlas Application and Business Process Matrix - Example 9

1.6 The Scrum Framework . 10

2.1 Watfa and Kaddoumi’s Final Framework . 14

2.2 Hanschke’s TOGAF ADM implementation with Scrum . 16

3.1 Solution Architecture . 20

3.2 Azure DevOps Work Item Structure . 21

3.3 Atlas Batch Job Process . 23

3.4 Swagger File Parser Process . 27

3.5 Creation of a Business Actor Tabular View . 30

3.6 Application Matrix View Configuration . 31

3.7 Node Context Blueprint Configuration . 31

4.1 Layers and components of the created Enterprise Architecture 34

4.2 The Goal Organic Blueprint . 36

4.3 The Business Actor Context Blueprint . 37

4.4 The Application Integration Blueprint . 39

4.5 The Application Interaction Map Representation . 40

4.6 The Node Context Blueprint . 41

4.7 The System Software Context Blueprint . 42

4.8 The Goal Organic Blueprint on 07/02/2022 . 43

4.9 The Goal Organic Blueprint on 01/06/2023 . 43

viii

List of Tables

1.1 Description of the Objectives . 11

3.1 Mapping between Azure DevOps Work Items and Atlas Architectural Assets 22

4.1 Description of the main architectural Representation Types 34

4.2 The Goal Catalog Representation . 35

4.3 The Requirement Catalog Representation . 35

4.4 The Application Component Catalog Representation . 37

4.5 The Application Service Catalog Representation . 38

4.6 The Node Catalog Representation . 40

4.7 The System Software Catalog Representation . 41

ix

Listings

3.1 Azure Work Item Queries . 24

3.2 Atlas XML File Example - Goal Class . 24

3.3 Swagger JavaScript Object Notation (JSON) File Example - Extranet 26

x

Acronyms

ADM Architecture Development Method

API Application Programming Interface

CPU Central Processing Unit

IDE Integrated Development Environment

JSON JavaScript Object Notation

PAT Personal Access Token

PBI Product Backlog Item

RAM Random Access Memory

REST Representational State Transfer

TOGAF The Open Group Architecture Framework

xi

1
Introduction

Contents

1.1 Background Work . 3

1.2 Objectives . 10

1

This Chapter includes the motivation for the presented study, the objectives, an overview of the

concepts and tools utilized throughout it, and the structure of the document.

The notion of Enterprise Architecture is ever-present within organizations. With the demanding re-

quirements of the technological landscape, it is becoming harder to process information and control

change. Enterprise Architecture is therefore gaining importance, as a method to control and document

the organization’s current practices and as an enabler of change and evolution [1].

On the other hand, software development methodologies are evolving to prioritize a fast product

delivery, focused on the client’s needs. This is achieved by bridging the gap between the business and

the development aspects, and prioritizing in-person meetings and discussion. These are the principles

of Agile development, as stated in the Agile Manifesto [2].

Given Agile’s focus on delivering software and limit the time spent on the documentation aspects of

the project, this can highly affect the capability to support the project in the long run or to replicate it alto-

gether, limiting the value that could have been earned from it. However, Enterprise Architecture values

this documentation. Its main focus is to generate value by creating representations of the organization’s

assets, to better assess strengths and weaknesses, change, and threats to the company’s growth [1].

There are some incompatibilities between Enterprise Architecture and Agile development. The main

incompatibility is the Agile mindset of focusing on delivering complete software as fast as possible and

sacrificing the documentation to achieve that.

Joining these two domains could lead to several benefits. Documenting the Agile projects using

Enterprise Architecture principles would generate value for the organization. Deploying mechanisms

that simplify the creation of such material, would allow Agile development teams to focus their efforts on

creating valuable software whilst maintaining a detailed architecture of the project.

Nevertheless, given the fast-paced nature of Agile projects, the documentation must be able to be

quickly adapted to fit ever-changing requirements. Failing to do so will result in an outdated architecture

that requires too much human effort to adapt, and will therefore provide little to no value to the project

and to the enterprise.

To create dynamic documentation, the Atlas Cartography Tool [3] is used. This tool implements

several Enterprise Architecture principles and easily allows for the creation of dynamic representations,

that will automatically evolve as new information is added to its repository. More information regarding

the Atlas Enterprise Cartography Tool can be found in Section 1.1.3. Furthermore, The Open Group

Architecture Framework (TOGAF)’s Architecture Development Method (ADM) [4] is used alongside Atlas,

guiding the development of the Enterprise Architecture assets. This framework is detailed in Section

1.1.2.

The result is an Enterprise Architecture that follows the Agile principles, generating as much docu-

mentation with the available information as possible, whilst allowing for manual creation of new informa-

2

Figure 1.1: Phases of TOGAF’s Architecture Development Method

tion when needed, to enrich the resulting architecture. This architecture includes representations that

automatically evolve with the new information gathered during the development process.

1.1 Background Work

This Section will provide some insight into the concepts of Enterprise Architecture and the TOGAF ADM

framework, as well as Agile Methodologies. Finally, some details of the Atlas Enterprise Cartography

Tool are presented in Section 1.1.3.

1.1.1 Enterprise Architecture

Enterprise Architecture is a widely studied topic. Zachman defines Enterprise Architecture as “that set

of descriptive representations (i.e. ‘models’) that are relevant for describing an Enterprise such that it

can be produced to management’s requirements (quality) and maintained over the period of its useful

life (change)” [1]. These representations are created by joining domains that may have been unrelated

in the past. This poses a challenge, as different domains are certain to differ in definitions and practices

used [5].

With the gradual increase in the number of enterprises and the increasingly competitive market, inno-

vation is now more than ever a requirement for success. Having good Enterprise Architecture practices

is crucial. Providing insight on the business processes of the company, as well as keeping records of

customers and partners are two advantages of Enterprise Architecture [6].

3

1.1.2 TOGAF ADM

To guide the creation of the project’s Enterprise Architecture, TOGAF’s Architecture Development Method

[4] was the chosen framework. This framework supports the creation of the architecture through different

phases that can be adapted to the needs of each Enterprise, with a focus on managing requirements

during the whole cycle. Additionally, several documents and assets are recommended to support each

phase. An overview of the Architecture Development Method can be seen in Figure 1.1. This Section

contains a brief description of each phase of the ADM.

1.1.2.A Phase 0: Preliminary Phase

Contains the groundwork of the cycle. In this phase, details such as the context and the scope of the

architecture are detailed. One of the main goals of this process is to adapt the ADM to the needs of the

enterprise, highlighting what practices should be streamlined, and what documentation is relevant.

1.1.2.B Phase A: Architecture Vision

The main objectives of this phase are the definition of the value that should be provided by the ar-

chitecture, as well as the compilation of information regarding vision, strategy, and goals. To achieve

this, one needs to examine the capabilities that the enterprise has to achieve the desired outcome, the

value streams or activities that offer value to a customer or stakeholder, and the relationships among the

entities of the enterprise, partners, and stakeholders.

1.1.2.C Phase B: Business Architecture

The main objective of this phase is the creation of rules and guidelines that detail how the architecture will

achieve the required business goals. To do so, it is recommended to start from already existing models

and resources. After analyzing them, they can be used to create the Baseline Business Architecture De-

scription, as well as a Target Business Architecture Description. These documents include requirements

and other important business-related elements, that are important to the current state of the architecture,

and to the future state, respectively. An additional document that compiles the decision-making process,

and information regarding the core business functions, is also an output from this phase. This document

is then used as an input to the next architecture phases, namely, Phase C and Phase D.

1.1.2.D Phase C: Information Systems Architecture

The Information Systems Architecture phase is divided into Data and Application Architecture. The main

objective of this phase is to create a mapping between the Business Architecture artifacts and the Data

and Application artifacts. During this phase, the architecture of the Information Systems is designed,

4

and the main components of those systems are specified. Furthermore, models and other resources

relevant to both Data and Application scopes are analyzed and included in a Roadmap. Finally, an

Architecture Definition Document is created. This document includes details regarding the decisions

made throughout the definition of the Information Systems Architecture, supported through models and

different matrices and graphics.

1.1.2.E Phase D: Technology Architecture

The Technology Architecture phase creates documentation regarding the decisions behind technolog-

ical choices. The details of technological components and services and the way that they impact the

overall architecture are described during this phase. Similar to phases B and C, the first step is to an-

alyze the current documentation and build models and documents that will then be used to support the

architecture. The result is an Architecture Definition Document that includes the technological decisions,

building blocks, and interfaces (i.e. hardware and software used).

1.1.2.F Phase E: Opportunities & Solutions

After creating the different scopes of the architecture, the next objectives include creating a complete

Architecture Roadmap, utilizing the information received from phases B, C, and D. Furthermore, another

aspect that is analyzed during this phase is the Transition Architecture. If the project requires several

iterations of the ADM, it is important to highlight the valuable assets going forward. It is also during this

phase that the Target Architecture is finalized. This is done with the past documentation in mind and

represents the final goal for the architectural work.

1.1.2.G Phase F: Migration Planning

This phase is mainly focused on ensuring that the Architecture Roadmap is feasible, through estimations

and risk assessment, and creating a Migration Plan that includes the strategy for implementation and

migration, milestones, costs, and other important information.

1.1.2.H Phase G: Implementation Planning

Monitoring the implementation, and whether the result is in line with what was planned, is the next step

in the cycle. This includes reviewing the documentation produced so far, identifying methods that will aid

in the development of the solution, and reviewing compliance.

5

1.1.2.I Phase H: Architecture Change Management

The final phase of the Architecture Development Method is concerned with the lifecycle of the architec-

ture, change, and compliance with requirements. Steps in this phase include monitoring risk, performing

the verified Change Requirements, and creating a new Request for Architecture Work, that will be used

as a baseline for the next iteration of the ADM cycle.

1.1.3 Atlas Enterprise Cartography Tool

The Atlas Enterprise Cartography Tool is an instrument that can be used to control transformations

within an organization, through the use of Enterprise Architecture principles.

To achieve this, Atlas provides a repository where data can be gathered both manually and automat-

ically and several representations of the imported data, that can be configured to suit the needs of the

enterprise.

1.1.3.A Atlas Data Model

Regarding data, Atlas follows the Object Relationship Model to internally store information. Users can

define classes with different properties and relations between objects. Each class can then be instanti-

ated by objects with certain properties and relations.

When creating a Country class, the user can specify what properties a Country object may have.

For example, the object Portugal of class Country has the following properties: Name, Inhabitants,

Language, and President. The President property is established as a relation to an object of class

Person. Figure 1.2 includes a representation of the Portugal object in Atlas. Each of the aforementioned

properties includes a value, notably, the President property is established through a relationship to an

object of class Person with the Name property equal to Marcelo Rebelo de Sousa. The properties

and relations of each object can then be used to generate representations and queries can be created

to further analyze the data. Examples of this can be found in Section 1.1.3.C. Figure 1.3 contains an

example of Atlas’ Object-Relationship model for the Portugal object. The relationship with the Person

class is achieved through the managed by relation type, which corresponds to the type of relationship

that was chosen when configuring the class.

1.1.3.B Atlas Structure

Atlas is divided into nine main categories. Each category offers different features to its users. A brief

description of the more relevant categories in the context of this project can be found below.

Explore Tab: The Explorer View gives access to navigation shortcuts that can be configured ac-

cording to the needed configuration.

6

Figure 1.2: Properties of an Atlas Object - Example

Figure 1.3: Atlas Object Relationship Model - Example

View Explorer Tab: The View Explorer View supports the creation of different representations of

data. These representations are dynamic, and can evolve with new information added into the

repository. The main types of representation that will be used throughout the project are the Blueprint

Canvas, Matrix Canvas, and Tabular Views. More information regarding representations in Atlas, can

be found in Section 1.1.3.C and their creation is detailed in Section 3.3.6.

Data Explorer Tab: The Data Explorer View includes a list of every object that has been loaded into

the repository alongside its properties and relations.

Query Explorer Tab: The Query Explorer View allows for the creation of queries that interact with

objects. These queries can be used to filter instances with certain properties or relations. Addition-

ally, these queries can be combined with the representations, to create additional value.

Batch Explorer Tab: The Batch Explorer View supports the use of Java code to extend the func-

tionalities of Atlas and create automation processes. This feature is particularly necessary when

integrating external services into Atlas or when dealing with more complex requirements.

1.1.3.C Atlas Representations

One of the crucial aspects of an Enterprise Architecture are the different representations and documents.

Atlas supports this through representations. The objects and relations present within the Atlas repository

can be represented in blueprints that can be configured to display exactly what the user needs.

Atlas supports several types of representations, most notably, tables that contain objects and their

7

properties, matrices that relate objects of two classes on a specific relation, and blueprints. Figure 1.4

contains an example of the latter. The Application Layered Blueprint representation utilizes the Cam-

paign Analytics Application object (of the Application Component class) as an argument, and it shows

the different application modules of the main application (Presentation Module, Integration Module, Data

Module, and Business Module). It also represents the Business Process objects that use it as well as

the System Software objects that are needed to ensure that this application is supported. Figure 1.5

contains an example of a matrix. In this particular example, the rows represent Applications and the

columns represent Business Processes. The representation shows that the Campaign Analytics Ap-

plication currently supports the 2-1 - Manage Organization Business Process and that the Campaign

Management Application currently supports the 2-2 - Administrate HR Business Process. This informa-

tion can be quickly edited directly in the representation, either by clicking a cell where a new relation will

be created, or by removing an existing relation.

Every Atlas representation is automatically generated with the most recent data, which ensures that

whenever the Campaign Analytics Application object is related to other Business Process or System

Software objects, the respective objects will be shown in the blueprint. Additionally, Atlas supports

object lifecycle. This means that every object can include information regarding when the object started

being conceived, when the object started its alive state, and when the object has reached its end, and is

no longer alive. To quickly check the evolution of the object’s lifecycle, Atlas also supports a time bar with

different milestones. Navigating through it will change the blueprint to reflect the state of the architecture

on that date, either in the past or planned changes in the future. An example can be seen in Section 4.2.

1.1.4 Agile Development Methodologies

Agile Software Development methodologies are defined in the Agile Manifesto [2] through a list of prin-

ciples. Agile values the continuous delivery of quality software to the customer, while embracing change

in the requirements “even late in development”. Another important aspect of Agile is having the business

side and the developers working closely together on a daily basis, with the goal of reducing development

time and improving agility and adaptability.

Figure 1.6 contains the Scrum Framework. Scrum development is based around a small team of

people that have the capability to self-manage their work and focuses on being nimble. The team

works in Sprints, usually no longer than three weeks and planned before their start. A Backlog with the

requirements and remaining work is compiled and used to plan each Sprint. Before the Sprint starts,

the team estimates what items from the Backlog will be developed, according to their estimated effort

and total time available, and a Sprint Backlog is created. During the Sprint, the team is responsible for

completing the items in the Sprint Backlog, and a Daily Scrum meeting is recommended to assess the

progress. At the end of the Sprint, the results are analyzed, and the new Sprint is planned with new

8

Application Layered (simple) - Campaign Analytics Application

Business Processes

Application

System Software

1-1-1- Analyze Market Share &
Competition

1-1-2 - Perform Internal
Analysis

1-3-3 - Process Incoming
Leads

1-3-4 - Monitor & Achieve
Campaign

2-1 - Manage Organization

6-6 - Process Sales Orders

Campaign Analytics Application

Oracle Service BUS PostgreSQL

Campaign Analytics
Application - Business

Module

Campaign Analytics
Application - Data Module

Campaign Analytics
Application - Integration

Module

Campaign Analytics
Application - Presentation

Module

Figure 1.4: Atlas Application Layered Blueprint - Example

1
-1

 -
 A

n
a

liz
e

 M
a

rk
e

tp
la

c
e

1
-2

 -
 D

e
ve

lo
p

 M
a

rk
e

ti
n

g
 P

la
n

1
-3

 -
 C

o
n

d
u

c
t

C
a

m
p

a
ig

n

2
-1

 -
 M

a
n

a
g

e
 O

rg
a

n
iz

a
ti

o
n

2
-2

 -
 A

d
m

in
is

tr
a

te
 H

R

2
-3

 -
 R

e
ta

in
 H

R

3
-1

 -
 P

ro
d

u
c

t
D

e
s

ig
n

3
-2

 -
 P

ro
je

c
t

E
n

g
in

e
e

ri
n

g

4
-1

 -
 O

p
e

ra
ti

o
n

 P
la

n
n

in
g

4
-2

 -
 P

u
rc

h
a

s
in

g

4
-3

 -
 R

e
c

e
iv

in
g

4
-4

 -
 Q

u
a

lit
y

A
s

s
u

ra
n

c
e

4
-5

 -
 W

a
re

h
o

u
s

e
 O

p
e

ra
ti

o
n

s

4
-6

 -
 P

ro
d

u
c

ti
o

n

4
-7

 -
 S

h
ip

p
in

g

4
-8

 -
 C

la
im

s
 H

a
n

d
lin

g

5
-1

 -
 P

la
n

 S
e

rv
ic

e

5
-2

 -
 F

u
lf

ill
 S

e
rv

ic
e

 C
o

n
tr

a
c

ts

5
-3

 -
 H

a
n

d
le

 C
u

s
to

m
e

r
E

n
q

u
ir

ie
s

5
-4

 -
 D

e
liv

e
r

S
e

rv
ic

e

6
-1

 -
 E

s
ta

b
lis

h
 S

a
le

s
 F

o
re

c
a

s
t

6
-2

 -
 M

a
n

a
g

e
 S

a
le

s
 F

o
rc

e

6
-3

 -
 G

e
n

e
ra

te
 S

a
le

s

6
-4

 -
 S

c
h

e
d

u
le

 C
u

s
to

m
e

r
A

c
ti

vi
ti

e
s

6
-5

 -
 M

a
k

e
 t

h
e

 S
a

le

6
-6

 -
 P

ro
c

e
s

s
 S

a
le

s
 O

rd
e

rs

6
-7

 -
 I

n
s

u
ra

n
c

e

7
-1

 -
 S

e
rv

ic
e

 S
tr

a
te

g
y

7
-2

 -
 S

e
rv

ic
e

 D
e

s
ig

n

7
-3

 -
 S

e
rv

ic
e

 T
ra

n
s

it
io

n

7
-4

 -
 S

e
rv

ic
e

 O
p

e
ra

ti
o

n

7
-5

 -
 C

o
n

ti
n

u
a

l S
e

rv
ic

e
 I

m
p

ro
ve

m
e

n
t

8
-1

 -
 P

ro
je

c
t

M
a

n
a

g
e

m
e

n
t

9
-1

 -
 P

a
y

9
-2

 -
 C

o
ll
e

c
t

9
-3

 -
 T

re
a

s
u

ry
 M

a
n

a
g

e
m

e
n

t

9
-4

 -
 C

a
p

it
a

l
A

s
s

e
ts

9
-5

 -
 C

lo
s

e

Campaign Analytics Application

Campaign Management

Application

Figure 1.5: Atlas Application and Business Process Matrix - Example

9

Product
Backlog

Sprint
Planning

Sprint
Retrospective

Sprint
Backlog

Increment

Daily
Scrum

Sprint
Review

1 Scrum Team

Scrum Framework © 2020 Scrum.org

SCRUM FRAMEWORK

Figure 1.6: The Scrum Framework

items from the Backlog [7].

Agile Development is increasing in popularity among enterprises. Scrum [8] is currently the most

widely used Agile development methodology, representing 66% of overall Agile use, according to Dig-

ital.ai’s 15th State of Agile Report [9]. Additionally, 52% of respondents claim that their enterprise has

adopted Agile as the go-to development methodology, and only 3% claim that Agile development is not

used on any scenario. https://www.overleaf.com/project/628a70dae4afccd7d76c6cda

1.2 Objectives

The goal of this project is to develop a tool that can be used by Agile development teams to easily

generate Enterprise Architecture documentation. Reducing the effort necessary to track the changes to

the architecture of the project will lead to the production of more architectural assets.

To achieve this, Atlas was used as a supporting tool, to gather data from an Agile development

project. An integration of Microsoft’s Azure DevOps was created within an Atlas repository. More infor-

mation regarding this solution and the supporting Agile development project can be found in Chapter

3.

Additionally, to quantify the success of the proposed solutions, the following statements will be taken

into account.

A - Quality of the generated Enterprise Architecture assets: It is of prime importance that the

generated documentation can contribute to the overall value of the project and to the organization

as a whole. Hence, producing updated and relevant representations is one of the priorities of this

solution.

10

Objective Description

Automatically gather data from different sources,
without disrupting the team’s workflow

It is crucial that the proposed solution is compatible
with the current workflow of the development team,
to ensure that it provides value to it, rather than posing
as a challenge

Automatically generate architectural documentation
supported by the gathered information

It is crucial that the generated assets are generated
without requiring excess human intervention, which
would reduce the usability of the tool

Update the documentation as needed, without
introducing too much human effort.

It is crucial that the process of updating the assets is
simple and that the updates are regular, such that the
result is a valuable asset as development occurs

Assess the usability of the created documents
It is crucial that the result is a tool that is simple to use
and that can be quickly learned and explored by the
project team, clients, and other parties

Table 1.1: Description of the Objectives

B - Manual effort required to generate and maintain the assets: With added effort being the num-

ber one deterrent to the creation of Agile projects’ documentation, the process of generating such

documents with the proposed solution must be as automated as possible. Furthermore, updating

these documents also proves a challenge. Outdated documentation represents little to no value to

both the project and the enterprise. It is, therefore, crucial that the generated representations are

easily maintained and evolve to accommodate project changes and progress.

Having these considerations in mind, Table 1.1 contains the objectives and their description, for the

final iteration of the solution. These emphasize the need of generating a Solution that does not negatively

impact the already existing workflow, and that can easily evolve to meet the ever-changing needs and

requirements of the development team and client.

This thesis is divided into five Chapters. Chapter 1 includes the motivation, objectives, background

work and structure of the document. Chapter 2 includes an overview of the literature surrounding the

topic of Agile development and Enterprise Architecture. Chapter 3 discusses the implementation details

of the proposed solution. Chapter 4 highlights the results that have been found from the creation of

the Enterprise Architecture and its assessment, focusing on the achieved goals and limitations of the

solution. Finally, in Chapter 5, a conclusion is presented alongside future work suggestions.

11

2
Related Work

Contents

2.1 Compatibility . 13

2.2 Proposed Frameworks and Models . 14

2.3 Discussion of the Literature . 15

12

This Chapter covers the work that has been considered as relevant for this topic. It is divided into

three main Sections.

1. Compatibility between Enterprise Architecture and Agile development

2. Models that aim to connect Enterprise Architecture and Agile development

3. Summary and discussion of the findings

Section 2.1 contains the findings related to the perceived compatibility of both ideas and some point-

ers as to how to bridge the gap. Section 2.2 focuses on the analysis of several models that propose

mappings between Enterprise Architecture and Agile development. Finally, Section 2.3 includes a sum-

mary and discussion of the findings.

2.1 Compatibility

The differences between Enterprise Architecture and Agile development are well-established and have

been discussed in Chapter 1. Therefore, the first category that will be explored is the viability of merging

both of these notions, and the advantages and disadvantages that are associated with it. Furthermore,

analysis of the main benefits, possible connecting points, and related difficulties are also provided.

The notion that Enterprise Architecture and Agile development can be coupled appears to be widely

accepted in this area. When questioned about it, professionals believe that even with all the aforemen-

tioned differences, merging Enterprise Architecture and Agile development should be possible, at least

in some levels [10].

There are, however, some difficulties. A frequently observed statement references the difficulty of

manually maintaining relevant architectural representations in the context of a software development

project (“Low-level models [...] are considered to be too expensive to maintain manually compared to

the benefits they bring”) [10], leading to poorly documented projects. Adding to this, most established

Enterprise Architecture frameworks are based on Waterfall development methodologies [11], making it

harder to adapt them to the changing requirements and overall focus of an Agile development project

[12].

Deploying Enterprise Architecture practices in Agile projects, will result in more readiness when

dealing with change and improve adaptability with emerging technologies [11]. One way to achieve this is

by shortening the distance between the development of the projects and the creation of the architecture.

Having developers and architects work too far apart will reduce the effectiveness of communication,

leading to “a lack of understanding and seeing the value of having an enterprise or solution architect” [10]

and reducing the possibility of early and frequent delivery, therefore hindering the value of the overall

architecture [11].

13

Figure 2.1: Watfa and Kaddoumi’s Final Framework

Regarding the architectural assets themselves, there is a need for rich and updateable represen-

tations. A commonly identified flaw is the lack of detail and integration of these assets (“EA models

should contain information about the software portfolio and dependencies between software and tech-

nology infrastructure” and “there should be more interaction between the high-level business models

and lower-level solution models” [10]).

2.2 Proposed Frameworks and Models

After establishing that combining Enterprise Architecture and Agile development is possible and includes

several possible benefits to both the development teams and the governance aspect of organizations,

in this Section, a summary of different proposed frameworks and models is presented. These models

utilize TOGAF’s ADM [4] as an enabler of said connection, and propose different approaches to achieve

it. The proposed models focus on different phases of the Architecture Development Method (Section

1.1.2 contains more information about the ADM).

2.2.1 Architecture Definition

Regarding the earlier phases, it is important to simplify the architecture definition process. Starting

by gathering requirements for every stakeholder of the project will result in a more streamlined pro-

14

cess. This can be followed by the creation of representations, such as a matrix that relates the different

requirements with the corresponding ADM phase. Afterward, the relevant ADM documents and deliv-

erables can be selected, leaving out the ones that were deemed as irrelevant. This will result in a well

documented starting point for the creation of the architecture which will, in turn, enable agility throughout

the ADM cycle [13].

2.2.2 Mapping between Enterprise Architecture and Agile

A mapping between the ADM and the Scrum Agile development methodology [8] is also presented

[14, 15]. The established mappings define roles and responsibilities that the Scrum team must over-

see, to ensure that the architecture of the project is created and correctly maintained. A committee of

owners must ensure governance of the architecture, business, and application sides. The architecture

owner must ensure that every team is on the same page regarding the architecture of the solution. The

business owner must oversee all the business processes’ application and optimization. The application

owner is the expert on the application landscape and keeps a backlog of features needed for the ap-

plication. This structure separates the notions of Architecture, Business, and Application into different

backlogs, creating a simple way to store and share information, that aims to support agile aspects such

as handling unforeseen change and quickly adapting to it [14].

Another presented approach relates Scrum teams to different phases of the ADM [15]. Figure 2.2

illustrates the distribution of teams throughout the cycle. The Architecture Development Team is respon-

sible for phases A (Architecture Vision), B (Business Architecture), C (Information Systems Architec-

ture), and D (Technology Architecture), as well as the Requirements Management phase. This team is

responsible for the creation of the Enterprise Architecture, and to do so, an Architecture Backlog and

User Stories are used to ensure that the next sprint is aligned with the goals of the project. The Port-

folio Management Team is the second team. They are responsible for phases E (Opportunities and

Solutions) and F (Migration Planning), ensuring that the planned architecture changes are coherent,

as well as correcting any problems during the merging phase. Finally, the Implementation Team uses

pure Scrum to complete the Sprint proposed by the Architecture Development Team, during phase G

(Implementation Governance). Using a structure similar to the one presented above can mitigate the

high amount of overhead required to create an architecture whilst allowing the project teams to decide

on implementation details, resulting in better delivery [15].

2.3 Discussion of the Literature

With the analysis provided above, some conclusions can be drawn. The first is that there is evidence

that Enterprise Architecture can be deployed in the context of Agile development methodologies. Studies

15

Figure 2.2: Hanschke’s TOGAF ADM implementation with Scrum

show that doing so may lead to several benefits to both the Agile development team, and the governing

body of the organization [10,11]. This is recognized by the majority of the participants of those studies.

There are several models that propose concrete mappings between Enterprise Architecture and

Agile. Regarding TOGAF’s ADM, it is possible to utilize agile processes when developing each phase.

For instance, during the early phases (Preliminary Phase and Architecture Vision) of the ADM, deploying

a streamlined process of requirement definition and restricting the scope of the architecture, will ensure

that the rest of the cycle can proceed without wasting time on unneeded objectives [13]. During the later

stages of the cycle, it is possible to assign team members responsible for different checkpoints of each

phase, such that the architecture that results from ADM is iterative and valuable [14,15].

However, there are certainly some limitations and important considerations that can dictate the suc-

16

cess of this implementation. The fact that Enterprise Architecture is still broadly seen as a better fit

for Waterfall-based projects alongside the disruptive nature of Agile methodologies (mainly sacrificing

documentation and focusing on delivering quality software as fast as possible), poses a challenge for

this combination [11]. Additionally, to achieve a satisfactory level of Enterprise Architecture integra-

tion, a strict connection between architects and developers is required [10], which will require additional

planning and generate some overhead. Another negative aspect, is the fact that some projects may

be limited in architectural resources, which can invalidate the possibility of delegating the process of

creating and maintaining the Enterprise Architecture to different internal teams, rendering some of the

explored models as unusable [14,15].

Deploying automatic procedures for generating the Enterprise Architecture may mitigate these prob-

lems, and this is one of the main focuses of the proposed solution. Automatically generating and up-

dating the architectural assets will reduce the strain placed on the development team, whilst offering a

baseline and planned perspective needed by the governing bodies. Furthermore, there is evidence that

Enterprise Architecture frameworks such as TOGAF can be utilized to support Agile methodologies. The

recommended artifacts, documents, and ADM can be utilized to promote agility while creating an Enter-

prise Architecture and to focus on the AS-IS and TO-BE aspects of that architecture [13]. On the other

hand, TOGAF naturally supports agility by offering a cycle that can be continuously repeated to create

the architecture. Phases B (Business Architecture), C (Information Systems Architecture), and D (Tech-

nology Architecture) from the ADM can be used to define the scope and detail of the baseline and target

architectures. Phases E (Opportunities and Solutions), F (Migration Planning), and G (Implementation

Governance) can deploy the target architecture through proper collaboration and governance. Phase H

(Architecture Change Management) can be used to ensure that changing requirements are being met

and assess their impact [16].

17

3
Solution Details

Contents

3.1 Solution Architecture . 19

3.2 Supporting Agile Project . 20

3.3 Solution Implementation . 22

18

This Chapter includes the details on how the development of the project took place, as well as its

structure. Additionally, some important details of the particular Agile development project that was used

as the base to implement this project are also presented.

As an attempt to bridge the gap between Agile development and Enterprise Architecture, a software

development project was created. The main goals of this project coincide with the objectives detailed in

Section 1.2.

The project was created as an extension to the Atlas Enterprise Cartography Tool [3]. The source

code is written in the Java programming language. Additionally, the program utilizes Microsoft’s Azure

DevOps Representational State Transfer (REST) Application Programming Interface (API) [17] to gather

information from DevOps repositories and the Swagger OpenAPI specification files attributed to each

created application (more information can be found in Section 3.2). The collected data is then automati-

cally imported into Atlas and architectural representations are created based on the latest information.

3.1 Solution Architecture

Figure 3.1 contains an overview of the architecture of the created solution. The architecture represen-

tation follows the ArchiMate Enterprise Architecture Modeling Language [18]. The created Atlas Agile

Integration solution is integrated into the Atlas Enterprise Cartography Tool.

The Atlas Agile Integration application includes three components:

1. Azure DevOps Batch Job: This component is responsible for collecting information from the

DevOps environment utilized by the Agile team, and importing it into Atlas. This program can

be run periodically to ensure that the latest changes are reflected in the Atlas repository, and

automatically, ensuring that the project team does not need to manually import the data.

2. Swagger File Parser: This component includes an integration with Swagger. Its main objective

is to parse internal documents to gather additional information that can be utilized by the Atlas

configuration to better represent the architecture of the Project. Mainly, the information that can be

gathered from these files includes dependencies between project modules, and external service

utilization.

3. Atlas Agile Repository Configuration: This component includes all of the classes, objects, rep-

resentations, and documents that are generated by Atlas, following TOGAF ADM recommenda-

tions. Blueprints, such as the one shown in Figure 1.4, matrices, and charts allow for the visual-

ization of the architecture during a specific timestamp. This component supports the architectural

assets of the created Enterprise Architecture.

19

Figure 3.1: Solution Architecture

3.2 Supporting Agile Project

The goal of the solution presented above is to generate Enterprise Architecture documentation for an

Agile development project. This project consists of a digital transformation of a Portuguese insurance

provider. The result includes several application modules, featuring back and front-office features.

The project team chose to utilize Microsoft’s Azure DevOps [17] environment to track the project’s

progress. The DevOps environment includes information regarding backlog management, sprint plan-

ning, and client acceptance. This information is used by Atlas to represent the architecture of the project.

When planning a sprint, the project team estimates and decides what Product Backlog Items (PBIs)

must be completed before the deadline. These are added to the Sprint Backlog, and are then assigned

to the project team’s members, to be worked on during the development sprint. Each sprint has a

duration of two weeks and it is concluded in a sprint closing meeting, where the progress is assessed

and the next sprint is planned.

Azure DevOps’ work items are used to represent the details of the project. Regarding the structure

of the information, Figure 3.2 contains an overview of the different Work Items that are in use. Each of

the main modules of the project is represented as an Epic. The Epics aggregate a set of Features. To

realize the Features, each one includes a set of PBIs. Finally, each PBI is divided into a set of Tasks

that are worked on by the members of the development team.

Each Work Item includes a list of states that are transitioned to and from, as the Work Item is man-

aged and worked upon. For instance, the PBI Work Items start in the New state. When a team member

starts working on it, the item will be set to the In Progress state. When the item is completed by the

assignee, it is moved to the Committed state, where it awaits approval. If the PBI is approved, the state

20

Epic

Feature

Product Backog Item

Bug

Task

Figure 3.2: Azure DevOps Work Item Structure

will be moved accordingly to In Progress, otherwise a discussion around it is started and its state may

return to In Progress to accommodate the new changes. The Done state is applied after the Sprint is

concluded. The Epic and Feature Work Items may have the New, In Progress, and Done states, de-

pending on the state of their child Work Items. An Epic is considered Done after all of its Feature Work

Items have the Done state. By the same token, a Feature is considered Done when all of its PBI Work

Items have the Done state.

A mapping between these Agile concepts and the Atlas architectural concepts is provided in Table

3.1. The development team establishes each Epic as a different Application required to complete the

project. Under each Application, the team defines and aggregates the Goals and Requirements needed

to successfully implement each one. The Requirements are created through discussion with the client

and further divided into simpler Requirements that are assigned to a single member of the development

team to be completed during the Development Sprints. An Application is considered to be complete after

every Requirement has been addressed and accepted by the client. Additionally, new Requirements

may arise at any point of development, if deemed necessary by the client, and the Requirements may

be rejected by the client if their needs are not met. This leads to a new development of that Requirement,

before it is evaluated by the client again.

The development of the software solution is done using several tools, such as the .NET development

framework and the Swagger toolset, for configuration and dependency management. Each software

module has two or more executables, generally a back-office and an Angular front-office. These ap-

plications communicate through REST services and the code is deployed into different environments,

namely, production, development, testing, and quality assurance, depending on the state of develop-

ment.

Regarding the difficulties of the development team, three main pain points were identified. The first is

a lack of a simple way to verify the progress of the project, namely to check on what Requirements have

been completed, and how close to completion a software module is at a certain point in time. The second

is the lack of information regarding the dependencies between the software modules, as currently there

are no mechanisms that show the connections between modules and internal and external services.

The last identified issue is the high amount of manual effort required to create the documentation that

21

Work Item Architectural Mapping
Epic Application

Feature Goal
Product Backlog Item Requirement

Table 3.1: Mapping between Azure DevOps Work Items and Atlas Architectural Assets

the client requires to check the evolution of the project.

3.3 Solution Implementation

After establishing the details and constraints of the supporting Agile development project, the Atlas Agile

Integration Solution was implemented. This Section contains the details of each module. Chapter 4

contains an overview of the results that were produced by this Solution, mainly focusing on the resulting

architectural assets and their impact.

3.3.1 Preparation Phase

Section 3.2 introduced the details of the Agile project that was used as a guide to develop this Solu-

tion. This Section highlights the development and implementation of the Atlas Agile Integration solution,

represented in Figure 3.1.

As a starting point, information was collected from the development team regarding the methods and

technology already in use. This was an essential step that aided in the definition of the mechanisms

that could be explored and implemented to support the creation of automated Enterprise Architecture

assets. The information gathered from this stage is present in Section 3.2.

After gathering the information that was needed to establish the objectives, the next step was to get

acquainted with the Atlas Enterprise Cartography Tool (analysed in Section 1.1.3). This analysis, in con-

junction with the findings regarding the needs of the project team and the used tools and methodologies,

shaped the strategy and implementation of the solution.

Concerning the tools that are used by the development team, the one that was highlighted as the

most relevant, was Microsoft’s Azure DevOps, as this was the main platform used by both the internal

team and the client to track the ongoing and upcoming work and to accept or reject any changes made

during development, acting as the major information repository of the project. Furthermore, this en-

vironment also contains the links to the deployment of each Application, where the Swagger OpenAPI

configuration is stored. This file includes information regarding the REST calls made by each application.

22

Figure 3.3: Atlas Batch Job Process

3.3.2 Azure DevOps Batch Job Implementation

With the previous constraints in mind, some important implementation decisions were made. To collect

the information from the DevOps environment, an Atlas Execution Batch Job was created. This option

allows for the use of Java code directly, which in turn enables the usage of REST APIs, such as Azure

DevOps’ API [17]. Additionally, a Batch Job can be scheduled to run in certain time intervals, automating

the importation of the updated information. The process of the created Batch Job is displayed in Figure

3.3. The first step is to collect the Work Items that are already present within the Atlas repository.

The Work Items are exported in the Atlas XML file format and these files are later edited with the new

information that has been collected. Afterward, the DevOps Work Items are requested by the Java

application, through the REST API. To minimize overhead, only new Work Items or Work Items that

have been modified in the last three days are requested. Properties from these Work Items, such as

the name, state, and completion dates, are collected and parsed into the Atlas XML file format. These

new properties are appended to the exported Atlas XML files, and finally they are imported back into

the Atlas repository. This ensures that any new change performed by a team member in the DevOps

environment is propagated into Atlas. Furthermore, this Atlas Batch Job is configured to run on a daily

basis, ensuring that the latest information is always available in the Atlas repository.

The development of the Batch Job was aided by Eclipse’s Integrated Development Environment (IDE)

software. The IDE was used alongside a private Git repository, created through GitHub, to enable a

better version control throughout the development process. The Git repository was also used during

the development of the Swagger File Parser module, paired with Microsoft’s Visual Studio Code and the

Python programming language.

To collect the Work Items from the DevOps repository, the first step was to generate a Personal

Access Token (PAT) from the DevOps environment, such that the requests through the Azure REST API

were authenticated, and the reading permissions were granted. Afterward, to query the environment for

the needed Work Items, queries were created using Azure’s Work Item Query Language. Three queries

were created, one for the Epic Work Items, another for the Feature Work Items, and the final one for

the PBI Work Items. The queries are shown in Listing 3.1. These queries return the Work Items that

have been modified in the last three days, and different properties are collected from different Work Item

23

types. From the Epic Work Items, the name, status, identifier, creation date, and the team member that

created it are collected. From the Feature Work Items, all of the previous properties are collected, as

well as the Epic Work Item that aggregates it. From the PBI Work Items, the description and acceptance

criteria of each one is also collected.

Listing 3.1: Azure Work Item Queries

1 epicQueryWiql = SELECT [System.Title],[System.Id],[System.State],[

System.WorkItemType],[System.CreatedBy],[System.CreatedDate] FROM WorkItems

WHERE [System.TeamProject] = @project AND [System.WorkItemType] = 'Epic' AND

[System.ChangedDate] > @startOfDay('-3d') ORDER BY [System.State], [System.Id

]

2 featureQueryWiql = SELECT [System.Title],[System.Id],[System.State],[

System.Parent],[System.WorkItemType],[System.CreatedBy],[System.CreatedDate]

FROM WorkItems WHERE [System.TeamProject] = @project AND [System.WorkItemType

] = 'Feature' AND [System.ChangedDate] > @startOfDay('-3d') ORDER BY [

System.State],[System.Id]

3 pbiQueryWiql = SELECT [System.Title],[System.Id],[System.Parent],[System.State],[

System.WorkItemType],[System.Description],[

Microsoft.VSTS.Common.AcceptanceCriteria],[System.CreatedBy],[

System.CreatedDate] FROM WorkItems WHERE [System.TeamProject] = @project AND

[System.WorkItemType] = 'Product Backlog Item' AND [System.ChangedDate] >

@startOfDay('-3d') ORDER BY [System.State]

These queries are then used in conjunction with the PAT and the azure-devops-java-sdk mod-

ule [19] to gather and store all of the information in XML Files that are then imported into Atlas. The

XML files follow the Atlas XML standard (shown in Listing 3.2). The document represents the prop-

erties and objects of a single class. The DocumentElement tag contains PropsAndValues tags. Each

PropsAndValues represents the Properties of a single Object. For instance, Listing 3.2 represents the

Goal class, the Claim Data Integration and Document Access Control objects and their respective prop-

erty values, as well as a configuration tag that shows all of the properties that are valid for the Goal

class.

Listing 3.2: Atlas XML File Example - Goal Class

1 <?xml version="1.0" encoding="utf-8"?>

2 <DocumentElement>

3 <PropsAndValues>

24

4 <Name># CONFIGURATION NODE # DO NOT DELETE THIS ROW #</Name>

5 <Decommission x0020 Date>#</Decommission x0020 Date>

6 <Description>#</Description>

7 <Owner>#</Owner>

8 <Productive x0020 Date>#</Productive x0020 Date>

9 <Strategic x0020 Domain>#</Strategic x0020 Domain>

10 </PropsAndValues>

11 <PropsAndValues>

12 <Name>Claim Data Integration</Name>

13 <Decommission x0020 Date>31-12-2022</Decommission x0020 Date>

14 <Description>The Claims received from the current platform must be

completely integrated.</Description>

15 <Owner>Alice Clark</Owner>

16 <Productive x0020 Date>07-02-2022</Productive x0020 Date>

17 <Strategic x0020 Domain>Claim</Strategic x0020 Domain>

18 </PropsAndValues>

19 <PropsAndValues>

20 <Name>Document Access Control</Name>

21 <Decommission x0020 Date>28-02-2023</Decommission x0020 Date>

22 <Description>The Documents received from the different platforms must be

accessible.</Description>

23 <Owner>Bob Patel</Owner>

24 <Productive x0020 Date>04-07-2022</Productive x0020 Date>

25 <Strategic x0020 Domain>Document</Strategic x0020 Domain>

26 </PropsAndValues>

27 </DocumentElement>

3.3.3 Swagger File Parser Implementation

To further enrich the information gathered from the development of the project, a Swagger File Parser

was created. The process is described in Figure 3.4. The project team utilizes the OpenAPI Speci-

fication to specify the API calls performed by each Application. Each Application includes a Swagger

file, available in the /swagger path of their deployment URL. The Swagger files are JavaScript Ob-

ject Notation (JSON) specifications that include the REST calls of each Application, listed under the

/api/api name path. This offers the possibility of retrieving information regarding the dependencies that

exist between the created Applications. Listing 3.3 shows an example of a Swagger file. The paths list

includes the API calls performed to other services, namely to the Extranet API and to the Subscription

25

API.

Listing 3.3: Swagger JSON File Example - Extranet

1 {

2 "x-generator": "NSwag v13.16.1.0 (NJsonSchema v10.7.2.0 (Newtonsoft.Json v13.

0.0.0))",

3 "openapi": "3.0.0",

4 "info": {

5 "title": "Online Web",

6 "description": "Online Web API",

7 "version": "v1"

8 },

9 "servers": [

10 {

11 "url": "https://online web address.pt"

12 }

13],

14 "paths": {

15 "/api/extranet/authenticate": {

16 "post": {...}

17 },

18 "/api/subscription/search-subscription": {

19 "post": {...}

20 }

21 }

22 }

To automatically collect that information, a Python script was developed. The script parses the JSON

files that contain the API calls, collecting the names of the APIs that are present within that file. These

names are then translated into the corresponding Application names, through a name alias file. The

final step of the process is to create the Atlas importation file that contains the dependencies of each

Application. This is achieved with the creation of an Excel file that follows the Atlas standard, with the

services that are requested by each Application, namely having a column with the name of the object,

followed by a column with every property that must be imported. Finally, this Excel file can be imported

into Atlas to update the information.

26

Figure 3.4: Swagger File Parser Process

3.3.4 Atlas Agile Repository Configuration

After establishing a process to automatically gather information from the DevOps environment (Figure

3.3) and to collect the dependencies between the applications (Figure 3.4), the next step was to prepare

the configuration of the Atlas repository. The main focus of the configuration is to utilize the collected data

to generate architectural representations that are useful and easily maintained. Representations (such

as the one depicted in Figure 1.4) can be used to dynamically display the latest information gathered

from the Azure DevOps Batch and Swagger File Parser. On top of that, the TOGAF ADM recommended

outputs and artifacts, were used as a guide when developing the configuration for the Atlas repository.

The utilized approach was to first define a set of basic representations for each of the Work Items,

representing their important properties and hierarchy. For instance, a blueprint representing every Fea-

ture Work Item, and consequently every Goal that is part of the project’s target solution, was created.

Using the status of the DevOps work item, Atlas can show a timeline, allowing for a quick overview on

which Applications have been created and which of them are yet to be completed on a certain date.

Additionally, blueprints representing every Goal and Requirement that are aggregated by a specific

Application were also created, enabling a big picture view of the progress status of each Application.

Afterward, one context blueprint was created for each of the Work Items, representing the status of

each one, as well as other information that could be gathered, such as the team member in charge of

developing each item.

The focus then shifted to the analysis of the ADM’s suggested documents, to create similar represen-

tations within Atlas. Throughout the cycle, several Architectural Artifacts [20] are proposed as supporters

of the architecture and Architectural Deliverables [21] evolve throughout the different phases of the ADM.

Section 3.3.5 contains an analysis of the more relevant deliverables within the scope of this Solution and

Section 3.3.6 contains information regarding the creation of the several representations.

3.3.5 TOGAF ADM Artifact Analysis

This section contains a list of important TOGAF ADM Deliverables [21]. These documents are sorted

by the phase in which they are created or updated, and contribute to the creation and of the project’s

27

Enterprise Architecture. Furthermore, the focus of this Section is to also highlight which documents can

enrich the architecture of the project and to guide the creation of these assets within Atlas. Additional

information regarding each TOGAF ADM Phase can be found in Section 1.1.2.

3.3.5.A Preliminary Phase

The outputs of this phase are intended as guiding documents, that will aid in the development of the

Enterprise Architecture of the project. The documents relevant to this phase are mostly created before

the start of the project.

Architecture Repository: This output includes all the architecture-related assets that are relevant

to the project. During the ADM cycle, this Repository must be updated with new documentation and

models that are created in each phase. The Architecture Repository will be supported through the

Atlas repository configuration. Using it, it is possible to store and update the created architectural

representations, achieving a complete view of the architecture.

3.3.5.B Phase A (Architecture Vision)

The outputs of Phase A include the initial planning of the cycle. Aspects such as scope, principles,

goals, and drivers of the project are defined during this phase and changed as needed throughout the

cycle.

Statement of Architecture Work: This document contains roles, responsibilities, and deliverables

used throughout the ADM, coupled with the architectural scope and approach definitions. Further-

more, it must include a way to measure the successful execution of the architectural project. The

success criteria and User Stories provided by the client are used to complement it.

Architecture Principles: This output defines a standard format to specify principles that concern

the architecture of the project. Usually, a Principle is defined in a table that contains the name

of the rule, the rationale behind the creation, and the implications that the requirement will have

on the architecture. To maintain and share this information in a timely manner, tables that allow

each member to create Goals and Requirements are supported. Additionally, these representations

include all the Goals and Requirements extracted from the DevOps environment.

3.3.5.C Phases B, C, and D (Business, Information Systems, and Technology Architecture)

Phases B, C, and D output similar documents, albeit with different scopes. Phase B focuses on the

definition of Business-related requirements, goals, constraints, and scheduling. Similarly, Phases C and

D focus on the definition of Information-related and Technological-related constraints, respectively.

28

Refinements to the Architecture Vision: This document includes a problem description, summary

diagrams, and requirements for the Business, Data, Application, and Technology scopes. It is con-

stantly evolving throughout the ADM, making it an important automation target when reducing the

manual overhead required to maintain the architecture up-to-date. Utilizing the information from

the DevOps environment and from the Swagger tool, models were created for the different scopes

(Business, Information Systems, and Technology). This document is heavily tied to the Architecture

Definition Document.

Architecture Definition Document: This document includes architectural artifacts and assets cre-

ated during the project’s development. They relate to the three scopes of phases B, C, and D, and

include artifacts such as Principles, models, and a Transition Architecture. To automate the mainte-

nance of these assets, Atlas representations are used. This ensures that every artifact is stored and

that information evolves as the project is developed and changes are made.

Architecture Roadmap: This document includes scheduling of work packages, divided by scope,

shown in a timeline with completion status and dates for each package. This is achieved through

the use of lifecycles in Atlas, meaning that each object includes a set of dates which inform the past,

present, and planned state changes.

3.3.5.D Phases E, F, G, and H (Opportunities and Solutions, Migration Planning, Implementation

Governance, and Architecture Change Management)

These phases are tied with several aspects that are not included in the primary scope of this study,

namely, they mainly modify the already created documents, with information regarding risk and change

assessment. Hence, they are not discussed further.

3.3.6 Architectural Representations Creation

The three main representations utilized to support the Enterprise Architecture are tabular views, matri-

ces, and blueprints. This Section includes details on how to create those representations.

3.3.6.A Tabular View Representation

The tabular view representations are available for every class in the Atlas repository. They show every

object of that class, alongside chosen relevant attributes. To create a tabular view, one needs to edit a

class through the Data Explorer tab in Atlas. The Tabular View Configuration category allows users to

specify the properties to be displayed in the table through a drag-and-drop interface. Figure 3.5 shows

an example of a Business Actor tabular view showing the actors, their e-mails, and their business phone

numbers. Several tabular views are shown in Chapter 4.

29

Figure 3.5: Creation of a Business Actor Tabular View

3.3.6.B Matrix Representation

The matrix representations are defined through Atlas’ View Explorer Tab. To create a matrix representa-

tion, one needs to create a view of type MatrixCanvas. On the Configuration window, the classes to be

displayed on the rows and columns can be picked, as well as the property that will determine whether

or not the matrix intersection is filled. Figure 3.6 shows the configuration for a matrix that shows the

dependencies between Applications. If an Application represented in the rows of the matrix interacts

with an Application represented in the columns through the Consolidation property, the intersection cell

will be painted blue. It is possible to add and remove relations directly through the matrix. Examples of

matrices are shown in Chapter 4.

3.3.6.C Blueprint Representation

The blueprint representations are also defined in Atlas’ View Explorer Tab. They can be created through

a visual designer that supports containers, variables, and queries. An example of the configuration of

a blueprint can be seen in Figure 1.4. The designer for this particular representation includes three

containers (Node, Operating System, and Application Components). The Node container shows the

argument Node that is used to access this representation. The other two containers show the result

of the operating system and applications variables. The variables are the result of queries that

are defined in the right-side of the Figure, by querying the argument Node’s relations. For instance,

the applications variable results from querying the deploys relation of the argument Node and then

filtering the results to show only Application Component objects. The same approach was used to define

the operating system query with the differences being the used relation (behaves as) and the filtered

30

Figure 3.6: Application Matrix View Configuration

objects’ class (System Software). The resulting blueprint is shown in Figure 4.6 and other examples of

blueprints can be found in Chapter 4.

Figure 3.7: Node Context Blueprint Configuration

31

4
Results and Analysis

Contents

4.1 Components of the Architecture . 33

4.2 Evolution of the Architecture . 42

4.3 Assessment of the Proposed Solution . 44

4.4 Limitations of the Proposed Solution . 45

32

This Chapter includes an overview of the created representations and architecture, the mapping with

the TOGAF ADM, and a summary of the observed results related to the deployment of the solution in

the context of the Agile Development project. It also contains information regarding the evolution of the

representations, to maintain an updated view of the project throughout its development, and assessment,

focusing on how the solution meets the objectives identified in Section 1.2.

4.1 Components of the Architecture

This Section contains an overview of the created Enterprise Architecture. Figure 4.1 shows the layers

and components utilized to represent the architecture of the project. The representations are divided

into several categories following the TOGAF standard, namely Architecture Vision, Business Architec-

ture, Application Architecture, Data Architecture, and Technology Architecture. Regarding the layers of

the presented architecture, the Architecture Vision layer includes the Goal and Requirement classes,

which are mainly connected to the needs of the client. These Goals and Requirements are owned by

Business Actors in the Business Architecture layer that oversee their completion and approval. The Ar-

chitecture Vision artifacts also directly influence the Application Architecture layer, given that each Goal

and Requirement is established with a certain Application Component in mind. Additionally, each Appli-

cation Component may provide and consume Application Services. Finally, the Technology Application

layer includes Nodes and System Software that supports the components of the Application Architecture

layer.

After establishing the architecture layers, the representations were created. The types of represen-

tations used are detailed in Table 4.1. Catalogs are mainly used as a listing of the architectural objects.

Each Catalog is configured to display the most relevant properties of each object, and this can be easily

edited at any time by a member of the project team, to complement the information. Maps are used

to relate two classes based on a relevant property, and to also allow for quick updating of information

(Figure 1.5). Finally, Blueprints are used to overview important objects, and relevant properties and rela-

tions, in specific contexts (Figure 1.4). The next Sections will highlight the representations that are used

to represent the Enterprise Architecture of the project, sorted by the architecture layer that categorizes

each one.

4.1.1 Architecture Vision Layer

The first layer of the proposed architecture is the Architecture Vision. Similarly to the TOGAF standard,

this layer includes the motivation for the architecture, mainly focusing on the goals and requirements that

are established for the project. This layer includes the Goal and Requirement classes that are extracted

from the project team’s DevOps environment. The dates and the actor responsible for their creation are

33

Figure 4.1: Layers and components of the created Enterprise Architecture

Representation Type Description

Catalog Tabular view showing every object of a certain class
and the most relevant properties

Map Matrix view showing a relation between the column
class and the row class

Blueprint Visual representation showing objects and
relevant relations, according to the scope

Table 4.1: Description of the main architectural Representation Types

used to complement the information.

The main representations of this layer are the Goal and Requirement Catalogs, and the Goal Organic

Blueprint, shown below.

4.1.1.A Goal Catalog

The Goal Catalog is a tabular representation of every Goal that is currently loaded into the Atlas repos-

itory. These can be either collected from the Azure DevOps integration (Section 3.3.2) or manually

created as needed. This Catalog is shown in Table 4.2, where the Goals are shown next to their Do-

main, Owner, Description, Productive Date, and planned Decommission Date. These properties can be

updated as needed, both manually and automatically.

New Goals can be manually added to this table, and every new Goal collected from the Azure De-

vOps Batch will appear here.

34

Name Strategic Domain Owner Description Productive Date Decommission Date

Claim Data Integration Claim Alice Clark The Claims received from the current
platform must be completely integrated. 07-02-2022 31-12-2022

Client Area Client Mark Evans A new Client Area that shows the past
and current Claims must be created. 27-06-2022 31-12-2022

Customer Support Client Mark Evans
A Customer Support feature must be
integrated into the new solution, with
a Chat Bot.

18-04-2022 01-06-2023

Document Access Control Document Bob Patel The Documents received from the
different platforms must be accessible. 04-07-2022 28-02-2023

Secure Sign-In Security John Irwin Sign-in must be performed through
secure protocols. 21-02-2022 19-05-2023

Table 4.2: The Goal Catalog Representation

Name Strategic Domain Owner Contributes To Influences Productive Date Decommission Date
Configure Claim Data Claim Alice Clark Claim Data Integration Claim Management Application 07-02-2022 31-12-2022

Create Document Templates Document Bob Patel Document Access Control Product Management Application
Intranet Application 04-07-2022 28-02-2023

Design Client Area Client Mark Evans Client Area Extranet Client Application
Extranet Application 15-07-2022 01-06-2023

Implement Secure Protocols Security John Irwin Secure Sign-In Intranet Application 21-02-2022 19-05-2023

Review Data Structure Document Bob Patel Claim Data Integration
Product Management Application
User Management Application
Claim Management Application

14-07-2022 31-12-2022

Table 4.3: The Requirement Catalog Representation

4.1.1.B Requirement Catalog

Similarly to the Goal Catalog, a Requirement Catalog representation is also provided (Table 4.3). This

representation shows the Requirements that are currently loaded into the Atlas repository. The Domain,

Owner, and Productive and Decommission Dates properties are shown, as well as the Goal that aggre-

gates this Requirement (under the Contributes To column) and the Applications that are influenced by

this Requirement (under the Influences column).

New Requirements can be manually added to this table, and every new Requirement collected from

the Azure DevOps Batch will appear here.

4.1.1.C Goal Organic Blueprint

The Goal Organic Blueprint lists every Goal under its Domain, offering a global view. Figure 4.2 in-

cludes this Blueprint. Here, the different Domains of Claim, Client, Document, and Security are shown,

alongside the Goals that have been established for each of them.

Every time a new Domain is created or a new Goal is added to any of the already existing Domains,

this representation will be automatically updated.

4.1.2 Business Architecture Layer

To support the Business level of the architecture, the Requirements and Goals utilized in the Architecture

Vision phase (Section 4.1.1) were combined with the information collected from the DevOps environment

regarding the project team members that are assigned to each PBI, and consequently, assigned to each

Goal, Requirement, and Application.

35

Goal Organic

Claim Client

Document Security

Claim Data Integration Client Area Customer Support

Document Access Control Secure Sign-In

Figure 4.2: The Goal Organic Blueprint

The main representation of this layer is the Business Actor Context Blueprint, shown below.

4.1.2.A Business Actor Context Blueprint

Figure 4.3 represents the Business Actor Context Blueprint. This representation shows the architectural

assets that are owned by a Business Actor, i.e. the assets that are impacted by a specific actor in some

way. The Figure shows the example of Business Actor Mark Evans. The assets that are impacted by this

actor, are shown below. Namely, Mark Evans directly impacts the Client Area and Customer Support

Goals, the Design Client Area Requirement, and the Rule Engine Application Application.

4.1.3 Application Architecture Layer

Regarding the Application Architecture Layer, the main components of this layer are the Application

Component and the Application Service classes. They represent the required software to be developed

and the communication interfaces established by them, respectively. The information for this layer is

mainly obtained from the DevOps environment Epics, as these map to the Application Components

to be developed, and from the Swagger Files representing the communication performed among the

different Application Components. This information can also be manually enhanced as needed.

The main representations of this layer are the Application Component and Application Service Cata-

logs, the Application Integration Blueprint, and the Application Interaction Map, shown below.

36

Business Actor Context HL - Mark Evans

Business Actor

Goals

Requirements

Applications

Mark Evans

Client Area Customer Support

Design Client Area

Rule Engine Application

Figure 4.3: The Business Actor Context Blueprint

4.1.3.A Application Component Catalog

The Application Component Catalog representation is shown in Table 4.4. It includes the Applications

that are planned to be developed during the project. It shows the planned Under Implementation dates

of each Application, as well as the Domain, Owner, and planned Productive and Decommission dates.

New Application Components can be manually added to this table, and every new Application Com-

ponent collected from the Azure DevOps Batch will appear here.

Name Organic Domain Owner Under Implementation Date Productive Date Decommission Date
Claim Management Application Management Alice Clark 07-02-2022 07-03-2022 31-12-2023
Commercial Application Online Bob Patel 04-07-2022 15-09-2022 31-12-2023
Extranet Application External Sophia Miller 25-07-2022 31-10-2022 31-12-2023
Extranet Client Application External Sophia Miller 25-07-2022 31-10-2022 31-12-2023
Extranet Mediator Application External Sophia Miller 25-08-2022 31-10-2022 31-12-2023
Extranet Partner Application External Sophia Miller 25-08-2022 31-10-2022 31-12-2023
Intranet Application Internal John Irwin 19-05-2022 26-09-2022 31-12-2023
KeyCloak Application Security John Irwin 19-05-2022 26-09-2022 31-12-2023
Management Web Application Management Alice Clark 16-05-2022 16-06-2022 31-12-2023
Online Web Application Online Bob Patel 08-08-2022 30-09-2022 31-12-2023
Product Management Application Management Alice Clark 14-11-2022 08-02-2023 31-12-2023
Rule Engine Application Management Mark Evans 27-06-2022 10-11-2022 31-12-2023
User Management Application Management Alice Clark 12-09-2022 16-12-2022 31-12-2023

Table 4.4: The Application Component Catalog Representation

37

Name Application Usage Productive Date Decommission Date
Commercial Application Service KeyCloak Application 15-09-2022 31-12-2023

Extranet Application Service KeyCloak Application
Commercial Application 31-10-2022 31-12-2023

Extranet Application Subscription Service Product Management Application
User Management Application 21-11-2022 31-12-2023

Keycoak Application Service 26-09-2022 31-12-2023
Management Web Application Service Intranet Application 16-06-2022 31-12-2023
Online Web Application Service Online Web Application 30-09-2022 31-12-2023
Product Management Application Service Rule Engine Application 08-02-2023 31-12-2023
Rule Engine Application Service Intranet Application 10-11-2022 31-12-2023
User Management Application Service Extranet Client Application 16-12-2022 31-12-2023

Table 4.5: The Application Service Catalog Representation

4.1.3.B Application Service Catalog

The Application Service Catalog representation is shown in Table 4.5. It represents all of the Application

Services that are provided by the Application Components to allow for different Applications to commu-

nicate and exchange information. Aside from the planned Productive and Decommission Dates of each

Service, the Applications that use the respective Services are specified (Application Usage column).

New Application Services can be manually added to this table, and every new Application Service

collected from the Swagger File Parser will appear here.

4.1.3.C Application Integration Blueprint

The Application Integration Blueprint is represented in Figure 4.4. It shows the connections between

different Applications, both requested and provided, as well as the Application Services utilized to do

so, for each Application. This representation will be updated automatically as new Applications and

Application Services are created and new relations are established between them.

In Figure 4.4, the Extranet Application requests the services that are on its left (Commercial Appli-

cation Service, Online Web Application Service, etc.). These services are provided by the Applications

represented on the left-most column (Commercial Application realizes Commercial Application Service,

Online Web Application realizes Online Web Application Service, etc.). The Extranet Application also

provides the services on the right (Extranet Application Service and Extranet Application Subscription

Service) to the Online Web Application.

4.1.3.D Application Interaction Map

The Application Interaction Map is a matrix-style representation, that shows an overview of every Appli-

cation that interacts with other Applications. Figure 4.5 represents all of the Applications that are loaded

into the Atlas repository. A blue square is shown on the intersection if an Application represented in the

rows of the matrix requests information from an Application represented in the columns of the matrix.

38

Application Integration HL - Extranet Application

Applications providing
Services

Requested Services Application Provided Services Applications requesting
Services

Commercial Application

Online Web Application

Product Management
Application

User Management
Application

Commercial Application
Service

Online Web Application
Service

Product Management
Application Service

User Management
Application Service

Extranet Application Extranet Application Service

Extranet Application
Subscription Service

Online Web Application

Figure 4.4: The Application Integration Blueprint

For instance, the Claim Management Application, the Management Web Application, and the Product

Management Application request information from the Online Web Application.

4.1.4 Technology Architecture Layer

The Technology Architecture Layer features the infrastructure that supports the Application, Business,

and Vision landscapes. The main components of this layer include the Nodes where the Applications are

executed. The System Software represents software that supports the use of the Applications and that

belong to a third-party vendor, supplied through licensing. The Nodes represent the physical machines

that host the Applications and all of their functionality.

The main representations of this layer are the Node and System Software Catalogs, and the Node

and System Software Context representations, shown below.

4.1.4.A Node Catalog Representation

The Node Catalog represented in Table 4.6, shows every Node that is currently loaded into the Atlas

repository, alongside its Central Processing Unit (CPU) core count, Random Access Memory (RAM)

size in gigabytes, as well as its Operating System. The Nodes specified here are utilized to deploy the

Application Components that are developed throughout the project.

New Nodes must be manually added to this table, as this information could not be collected from the

identified data sources.

39

C
la

im
 M

a
n

a
g

e
m

e
n

t
A

p
p

lic
a

ti
o

n

C
o

m
m

e
rc

ia
l A

p
p

lic
a

ti
o

n

E
xt

ra
n

e
t

A
p

p
lic

a
ti

o
n

E
x

tr
a

n
e

t
C

lie
n

t
A

p
p

lic
a

ti
o

n

E
xt

ra
n

e
t

M
e

d
ia

to
r

A
p

p
lic

a
ti

o
n

E
x

tr
a

n
e

t
P

a
rt

n
e

r
A

p
p

lic
a

ti
o

n

In
tr

a
n

e
t

A
p

p
lic

a
ti

o
n

K
e

yC
lo

a
k

 A
p

p
lic

a
ti

o
n

M
a

n
a

g
e

m
e

n
t

W
e

b
 A

p
p

lic
a

ti
o

n

O
n

lin
e

 W
e

b
 A

p
p

lic
a

ti
o

n

P
ro

d
u

c
t

M
a

n
a

g
e

m
e

n
t

A
p

p
lic

a
ti

o
n

R
u

le
 E

n
g

in
e

 A
p

p
lic

a
ti

o
n

U
s

e
r

M
a

n
a

g
e

m
e

n
t

A
p

p
lic

a
ti

o
n

Claim Management Application

Commercial Application

Extranet Application

Extranet Client Application

Extranet Mediator Application

Extranet Partner Application

Intranet Application

KeyCloak Application

Management Web Application

Online Web Application

Product Management Application

Rule Engine Application

User Management Application

Figure 4.5: The Application Interaction Map Representation

Name CPU Core Count RAM (GB) Operating System
Production Application Server 1 8 16 Windows 10
Production Application Server 2 4 8 Windows 10
Production Application Server 3 4 8 Windows 10
Production Back-End Server 1 4 16 Windows 10
Production Back-End Server 2 4 8 Windows 10
Production Back-End Server 3 4 8 Windows 10

Table 4.6: The Node Catalog Representation

40

Name Supplier Productive Date Decommission Date
.NET Framework 4.7 Microsoft 07-02-2022 31-12-2023
Angular 13.0 Angular Team 08-03-2022 31-12-2023
Swagger UI 4.10 SmartBear Software 24-03-2022 31-12-2023
Windows 10 Microsoft 02-02-2022 31-12-2023

Table 4.7: The System Software Catalog RepresentationNode Context Variant - Production Application Server 1

Node Operating System

Application Components

Production Application Server
1

Windows 10

Extranet Application Extranet Client Application

Figure 4.6: The Node Context Blueprint

4.1.4.B System Software Catalog Representation

The System Software Catalog shown in Table 4.7 shows the System Software that is used by the Ap-

plications. A System Software includes its supplier, and the dates that correspond to the use of the

Software.

New System Software must be manually added to this table, as this information could not be collected

from the identified data sources.

4.1.4.C Node Context Blueprint

Figure 4.6 includes the Node Context Blueprint. This representation shows the Applications that are

deployed at a certain Node, as well as the Operating System that is used by that Node. Whenever in-

formation regarding the Operating System changes, this representation will display the new information.

Additionally, as new Application Components are implemented and deployed on a certain Node, the

Application Components will appear in the corresponding container.

4.1.4.D System Software Context Blueprint

Figure 4.7 contains the System Software Context Blueprint. This representation shows the Applications

that use a certain System Software asset, as well as its supplier. As the team inputs new information

regarding the use of System Software by Application Components, new objects will be added to the

41

System Software Context Variant - Angular 13.0

System Sofware Supplier

Application Components

Angular 13.0 Angular Team

Extranet Application Extranet Client Application Extranet Mediator Application Extranet Partner Application

Figure 4.7: The System Software Context Blueprint

Application Components container. On the other hand, if a certain Application is changed, and no

longer uses a certain System Software, that Application Component will no longer appear in the System

Software Context Blueprint of that System Software.

4.2 Evolution of the Architecture

The components highlighted in Section 4.1 support a layered Enterprise Architecture. However, the

Architecture of an Agile development project is constantly changing and evolving, with new requirements

from the client and unforeseen changes during development. Therefore, relying on representations that

are too difficult to update is detrimental to the overall value of the Architecture.

To combat that, the representations shown in the previous Section support Atlas’ time bar. This

feature, paired with the collected information regarding planned implementation, productive, and de-

commission dates, allows for a quick understanding of the evolution of the Enterprise Architecture.

This is supported through the use of lifecycles and the time bar feature in Atlas. Lifecycles can be

created for any class within Atlas and they specify the sequence of states from the conception of the

object, until the object is no longer utilized and removed. Each state can be assigned an order, and a

date such that after a certain timestamp, the object will change its state, according to the information

available in the repository.

A time bar is available in every Atlas representation, which allows for quick browsing through dates

where state changes occur. This highlights the evolution of the Architecture in a visual manner, as

colors are assigned to each state. For instance, Figures 4.8 and 4.9 show an example of how the time

bar affects the representations in Atlas. Figure 4.8 shows the Goal Organic Blueprint representation with

the time bar set to the 7th of February 2022. The Goals filled with a grey color correspond to Goals that

are on the Conceiving state on this timestamp, which means that they are not yet realized (Client Area,

42

Goal Organic

Claim Client

Document Security

Claim Data Integration Client Area Customer Support

Document Access Control Secure Sign-In

Figure 4.8: The Goal Organic Blueprint on 07/02/2022Goal Organic

Claim Client

Document Security

Claim Data Integration Client Area Customer Support

Document Access Control Secure Sign-In

Figure 4.9: The Goal Organic Blueprint on 01/06/2023

Customer Support, Document Access Control, and Secure Sign-In). The Claim Data Integration Goal is

in the Productive state, as it is not filled with any colors. Figure 4.9 shows the Goal Organic Blueprint

representation with the time bar set to the 1st of June 2023. The Goals that are filled with a red color

correspond to Goals that are on the Decommissioned state on this timestamp, which means that they

have been in a Productive state in the past, and have been marked as no longer relevant (Claim Data

Integration, Client Area, Document Access Control, and Secure Sign-In). On this date, the Customer

Support Goal is still in the Productive state.

This information can change according to the imported data. For instance, if a Goal’s decommis-

sion date property were to be changed in some manner, the result would be immediately visible in the

representations that showed that Goal.

43

4.3 Assessment of the Proposed Solution

This Section provides an assessment of the proposed solution with the objectives established in Section

1.2 in mind. The main established concerns relate to the value offered by the Enterprise Architecture as

well as the need to avoid high manual effort to be maintained.

Regarding the objective of gathering information whilst avoiding the disruption of the team’s work-

flow, this is fully achieved with the use of the automated Atlas Batch Job (Section 3.3.2) and Swagger

File Parser (Section 3.3.3), the data can be automatically collected from the respective sources and

transformed into information supported by Atlas. Additionally, the impact of these automated tools is

very limited as, on one hand, the Atlas Batch Job only requests textual information from Work Items that

have been edited in the last three days, and on the other hand, the Swagger Parser is limited to the

number of Applications that have been developed, which will limit its execution time growth.

Regarding the objective of automatically generating architectural documentation without introducing

manual overheads, this is achieved by the creation of the dynamic representations in Atlas shown above.

Atlas supports the creation of maps that are automatically updated as new information is added to the

repository. For example, as new Goals are added, either through the collection of data from the DevOps

environment or through manual input, the Goal Organic Blueprint (Figure 4.2) will be populated with new

Objects and new containers, should a new Domain be created to categorize the new Goals. By the

same token, as Goals reach their Decommission Date, or are removed from the repository altogether,

they will no longer appear in the Goal Organic Blueprint. This ensures that there is no need to change

the representation’s specification, rather, the representations evolve as data evolves.

When it comes to the ability to update the data utilized to represent the architecture, there are some

mixed results. Regarding the information that can be directly obtained from the automated processes,

the effort required to update it is little to none, as the processes are deployed automatically on a daily

basis. This is the case for the mapped information from the DevOps environment and Swagger files,

such as the Goals, Requirements, Application Components, and Application Services that are created

and interact. In contrast, information that can not be found through the deployed automated processes

must be added manually, if needed. This is the case of the aforementioned Technology Architecture

Layer and several dates that are not presented in the identified platforms. Therefore, the proposed

solution offers an easily expandable starting point for the architecture that may evolve as necessary. It

may, however, require some manual effort to update information that can not be mapped from external

tools.

To summarize, a mapping between Agile development and the TOGAF framework is proposed and

an Enterprise Architecture that follows the TOGAF ADM recommended artifacts (discussed in Section

3.3.5) is presented. The Atlas repository acts as the Architecture Repository, containing the updated

assets and representations. The Architecture Vision layer of the Architecture supports the Architecture

44

Principles, through the Goal and Requirement tables and representations. The Business, Application,

and Technology layers of the Architecture include the assets that are required by the Architecture Defini-

tion Document. All of the representations include the lifecycle of the objects, allowing each user to look

into the future of the project and look at the planned changes, supporting an Architecture Roadmap of

the project.

4.4 Limitations of the Proposed Solution

After analyzing the quality of the solution, some limitations are now highlighted. These limitations mainly

concern the usability of the Atlas Agile Repository Configuration and the specificity of the Azure DevOps

Batch Job and Swagger File Parser.

Given the fact that the Azure DevOps Batch Job was developed with the team’s particular workflow

in mind, it makes it difficult to replicate the automated processes in different settings. The data that

is gathered from the DevOps environment is specific to the data structure in place. For instance, the

mapping shown in Table 3.1 is limited to the work structure utilized by the development team and various

information sources are limited to the use of the specific technologies (Azure DevOps environment and

Swagger). This makes it a necessity to adapt the Atlas Batch Job to the working environment of each

project, when trying to replicate these results.

Another limitation that is tied with the previous is the need for well-established data sources, that can

be automatically queried through some kind of service. Without a structured development repository,

automatically gathering data to build the architectural assets in Atlas is not possible. Looking at the

proposed solution, some of the information that composes the representations can be automatically

collected, however, there are several details that could not be gathered from the identified sources, and

as such, have to be added manually. Therefore, to build the final architecture, some manual effort is

needed to input the information that can not be automatically collected.

45

5
Conclusion

Contents

5.1 Resulting Architecture . 47

5.2 Future Work . 48

46

After assessing the solution and resulting architecture, two main conclusions are reached. The first

is that Agile development and Enterprise Architecture are not mutually exclusive. This study shows an

example of how an Enterprise Architecture framework (TOGAF ADM) can be deployed in the context

of an Agile development project, without disrupting the workflow, and utilizing the available resources to

facilitate its implementation.

The second discovery is that by analyzing the different information sources of an Agile project, it

was possible to deploy automation processes that translated that information into architectural data.

This proved useful when creating the underlying architecture, as it significantly lowered the manual

effort required to maintain the architectural assets, allowing the project members to focus on delivering

software instead of constantly updating the architecture. This is, however, highly dependant on the

available data sources. The automated generation of representations requires at least some updated

information to ensure the value of the architecture as a whole. Failing to identify and create these

automated features will lead to an increase in required manual effort.

5.1 Resulting Architecture

The Architecture detailed in Chapter 4 shows a collection of representations that can be used during

Agile software development to represent the current and planned state of the assets. The solution makes

use of the identified data suppliers and current workflows to generate documentation that evolves as new

requirements are created and as new modules are developed.

This creates a base that can be extended upon as the needs of the enterprise and the development

team shift. For instance, if the team’s workflow changes, the updated methodology can be used to

develop new automated data gathering processes, to ensure that the information can be swiftly incor-

porated into the architecture. For example, if the DevOps environment were to be replaced with another

Agile development pipeline, the Atlas Repository Configuration that was created could still be used, pro-

vided that a new Atlas Batch Job that requests relevant information from the new application’s APIs was

created. Therefore, the Atlas Repository Configuration that was created with TOGAF ADM as a guide,

can be utilized as a basis for the creation of architectural assets for any Agile development methodology

workflow that utilizes similar concepts.

On the other hand, depending on the priorities of the project team, data can be manually inserted

by any team member when there are no viable ways to automate its collection, without the need for

a separate architectural team. This is the case of some information displayed in Section 4.1, such as

the Technology Architecture Layer (Section 4.1.4). As no viable mechanism was found to automatically

collect the Nodes that are hosting the Applications and the Software that support each Application, this

information was added manually by the team members.

47

Therefore, the result is a template that supports the creation of a layered architecture, focusing on the

Architecture Vision (Section 4.1.1), Business Architecture Layer (Section 4.1.2), Application Architecture

Layer (Section 4.1.3), and Technology Architecture Layer (Section 4.1.4), corresponding to phases A, B,

C, and D of the TOGAF ADM, respectively. This shows that there is, in fact, a possible mapping between

Agile development methodologies and Enterprise Architecture frameworks.

5.2 Future Work

After looking at the results and discussing some limitations, this Section contains pointers regarding

possible future additions to the proposed solution. These additions are proposed at two levels, the

first being a more complete mapping of TOGAF ADM structure within Atlas, and the second being the

creation of more generic automatic data gathering processes.

Regarding the mapping between the TOGAF ADM and Atlas, the proposed solution includes arti-

facts that utilize the data that could be extracted from the team’s workflow tools. This excludes several

notions, such as Capabilities (representing the ability of an enterprise to reach a specific purpose) for

the Architecture Vision Phase, Business Functions (representing the Capabilities aligned with the orga-

nization) and Business Services (representing interfaces that support the defined Capabilities) for the

Business Architecture Phase. Supporting these concepts in the layered architecture and creating their

respective artifacts would lead to a more complete architecture that could be adapted into more distinct

use-cases.

Regarding the creation of generic data gathering processes, the proposed solution deploys specific

processes that are tailored to the team’s established workflow, namely the usage of Azure DevOps and

OpenAPI specification files. To create a more generic solution, easily adaptable to more methodologies,

extensions to these automation processes could be made. For instance, creating data collection pro-

cesses that interact with other popular DevOps repositories (such as Jira) that collect data and generate

Atlas XML Files, would create new use-cases for the solution.

48

Bibliography

[1] J. A. Zachman, “Enterprise architecture: The issue of the century,” Database programming and

design, vol. 10, no. 3, pp. 44–53, 1997.

[2] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,

J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,

S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas, “Manifesto for agile software

development,” 2001, https://agilemanifesto.org/. Accessed 10/09/2022. [Online]. Available:

https://www.agilemanifesto.org/

[3] P. Sousa, R. Leal, and A. Sampaio, “Atlas: the enterprise cartography tool,” in Proceedings of 8th

the Enterprise Engineering Working Conference Forum, vol. 2229, 2018.

[4] The Open Group, “The TOGAF Standard, Version 9.2 - Introduction to Part II,” 2018, https:

//pubs.opengroup.org/architecture/togaf9-doc/arch/chap04.html. Accessed 14/10/2022. [Online].

Available: https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap04.html

[5] M. Lankhorst et al., Enterprise architecture at work. Springer, 2009, vol. 352.

[6] H. Jonkers, M. M. Lankhorst, H. W. ter Doest, F. Arbab, H. Bosma, and R. J. Wieringa, “Enterprise

architecture: Management tool and blueprint for the organisation,” Information systems frontiers,

vol. 8, no. 2, pp. 63–66, 2006.

[7] K. Schwaber and J. Sutherland, “The scrum guide,” Scrum Alliance, vol. 21, no. 19, p. 1, 2011.

[8] K. Schwaber, “Scrum development process,” in Business object design and implementation.

Springer, 1997, pp. 117–134.

[9] Digital.ai, “15th Annual State of Agile Report,” 2021, accessed 03/10/2022. [Online]. Available:

https://info.digital.ai/rs/981-LQX-968/images/SOA15.pdf

[10] M. Canat, N. P. Català, A. Jourkovski, S. Petrov, M. Wellme, and R. Lagerström, “Enterprise ar-

chitecture and agile development: Friends or foes?” in 2018 IEEE 22nd International Enterprise

Distributed Object Computing Workshop (EDOCW). IEEE, 2018, pp. 176–183.

49

https://agilemanifesto.org/
https://www.agilemanifesto.org/
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap04.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap04.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap04.html
https://info.digital.ai/rs/981-LQX-968/images/SOA15.pdf

[11] M. Watfa and T. Kaddoumi, “A foundational framework for agile enterprise architecture,” Interna-

tional Journal of Lean Six Sigma, 2021.

[12] M. McCormick, “Waterfall vs. agile methodology,” MPCS, N/A, vol. 3, 2012.

[13] F. Sandoval, V. Galvez, and O. Moscoso, “Development of Enterprise Architecture using a Frame-

work with Agile Approach,” ENFOQUE UTE, vol. 8, no. 1, pp. 135–147, FEB 2017.

[14] W. Daoudi, K. Doumi, and L. Kjiri, “An approach for adaptive enterprise architecture.” in ICEIS (2),

2020, pp. 738–745.

[15] S. Hanschke, J. Ernsting, and H. Kuchen, “Integrating agile software development and enterprise

architecture management,” in 2015 48th Hawaii International Conference on System Sciences.

IEEE, 2015, pp. 4099–4108.

[16] M. Lambert, “How the TOGAF® Standard Enables Agility,” Jun 2018, Accessed 14/10/2022.

[Online]. Available: https://blog.opengroup.org/2018/06/19/how-the-togaf-standard-enables-agility/

[17] E. Batkoski, “Azure DevOps Services REST API Reference,” Jul. 2022, publisher: Microsoft,

Accessed 18/10/2022. [Online]. Available: https://learn.microsoft.com/en-us/rest/api/azure/devops/

[18] The Open Group, “ArchiMate® 3.1 Specification,” 2019, https://pubs.opengroup.org/architecture/

archimate3-doc/. Accessed 18/09/2022. [Online]. Available: https://pubs.opengroup.org/

architecture/archimate3-doc/

[19] H. Karthic, “Java SDK for managing Azure Devops Services,” Accessed 20/10/2022. [Online].

Available: https://github.com/hkarthik7/azure-devops-java-sdk

[20] The Open Group, “The TOGAF Standard, Version 9.2 - Architectural Artifacts,” 2018, https:

//pubs.opengroup.org/architecture/togaf9-doc/arch/chap31.html. Accessed 14/10/2022. [Online].

Available: https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap31.html

[21] ——, “The TOGAF Standard, Version 9.2 - Architecture Deliverables,” 2018, https:

//pubs.opengroup.org/architecture/togaf9-doc/arch/chap32.html. Accessed 14/10/2022. [Online].

Available: https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap32.html

50

https://blog.opengroup.org/2018/06/19/how-the-togaf-standard-enables-agility/
https://learn.microsoft.com/en-us/rest/api/azure/devops/
https://pubs.opengroup.org/architecture/archimate3-doc/
https://pubs.opengroup.org/architecture/archimate3-doc/
https://pubs.opengroup.org/architecture/archimate3-doc/
https://pubs.opengroup.org/architecture/archimate3-doc/
https://github.com/hkarthik7/azure-devops-java-sdk
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap31.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap31.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap31.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap32.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap32.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap32.html

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Background Work
	1.1.1 Enterprise Architecture
	1.1.2 TOGAF ADM
	1.1.2.A Phase 0: Preliminary Phase
	1.1.2.B Phase A: Architecture Vision
	1.1.2.C Phase B: Business Architecture
	1.1.2.D Phase C: Information Systems Architecture
	1.1.2.E Phase D: Technology Architecture
	1.1.2.F Phase E: Opportunities & Solutions
	1.1.2.G Phase F: Migration Planning
	1.1.2.H Phase G: Implementation Planning
	1.1.2.I Phase H: Architecture Change Management

	1.1.3 Atlas Enterprise Cartography Tool
	1.1.3.A Atlas Data Model
	1.1.3.B Atlas Structure
	1.1.3.C Atlas Representations

	1.1.4 Agile Development Methodologies

	1.2 Objectives

	2 Related Work
	2.1 Compatibility
	2.2 Proposed Frameworks and Models
	2.2.1 Architecture Definition
	2.2.2 Mapping between Enterprise Architecture and Agile

	2.3 Discussion of the Literature

	3 Solution Details
	3.1 Solution Architecture
	3.2 Supporting Agile Project
	3.3 Solution Implementation
	3.3.1 Preparation Phase
	3.3.2 Azure DevOps Batch Job Implementation
	3.3.3 Swagger File Parser Implementation
	3.3.4 Atlas Agile Repository Configuration
	3.3.5 TOGAF ADM Artifact Analysis
	3.3.5.A Preliminary Phase
	3.3.5.B Phase A (Architecture Vision)
	3.3.5.C Phases B, C, and D (Business, Information Systems, and Technology Architecture)
	3.3.5.D Phases E, F, G, and H (Opportunities and Solutions, Migration Planning, Implementation Governance, and Architecture Change Management)

	3.3.6 Architectural Representations Creation
	3.3.6.A Tabular View Representation
	3.3.6.B Matrix Representation
	3.3.6.C Blueprint Representation

	4 Results and Analysis
	4.1 Components of the Architecture
	4.1.1 Architecture Vision Layer
	4.1.1.A Goal Catalog
	4.1.1.B Requirement Catalog
	4.1.1.C Goal Organic Blueprint

	4.1.2 Business Architecture Layer
	4.1.2.A Business Actor Context Blueprint

	4.1.3 Application Architecture Layer
	4.1.3.A Application Component Catalog
	4.1.3.B Application Service Catalog
	4.1.3.C Application Integration Blueprint
	4.1.3.D Application Interaction Map

	4.1.4 Technology Architecture Layer
	4.1.4.A Node Catalog Representation
	4.1.4.B System Software Catalog Representation
	4.1.4.C Node Context Blueprint
	4.1.4.D System Software Context Blueprint

	4.2 Evolution of the Architecture
	4.3 Assessment of the Proposed Solution
	4.4 Limitations of the Proposed Solution

	5 Conclusion
	5.1 Resulting Architecture
	5.2 Future Work

	Bibliography
	Bibliography

